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Abstract 

We introduce space-time ensemble methods to formulate definitions of single particles 
and single photons as local abstractions of constant processes. We find the general form 
of the corresponding Stueckelberg Lagrangian for Riemannian and Newtonian space- 
times and supply a physical interpretation for the worldline parameter. We develop the 
corresponding mechanical theories over the extended configuration space and the 
extended phase space. We suppose that the background can be represented by an 'external 
field' and we study several general examples. Certain phenomenological forms do not 
describe particles, others do not seem to describe theories in which the representation of 
the background is process independent (Riemannian case). At the canonical level the 
elimination of second-class constraints associated with null processes generates restric- 
tions on the domain of definition of photon coordinates which correspond to the absence 
of zero energies. The requirement that the canonical process-anti-process classification 
exist leads to a factorization condition on the extended phase space which is satisfied 
for all the cases studied in which the configuration formalisms entail no difficulties, 
except one, which is the 'minimally' coupled external vector field case over Riemannian 
space-times. We discuss the observation theoretical significance of our results. 

1. Introduction 

For  the history generated by Stueckelberg's act ion principle (Stueckel- 
berg, 1941, 1942) with the Lagrangian,'~ 

Ls = �89 2 + q(dx/dA).  A(x)  (1.1) 

the sign e ~ - e(dx~ is independent  of A, where x ~ is a time coordinate.  
But for the case, 

Ls = �89 2 - a~o(x), a = constant  (1.2) 

e ~ is no t  a constant  and  examples exist in which the curves reverse direction 
in  x ~ In  either case, however, Stueckelberg's dynamics is based on  a 
a-evolut ion formalism. 

t We use the space-favoring metric and the ordinary summation convention; 
(dxldh).A(x) means inner product of the vectors (dx/d;Q and A(x). Latin indices will 
run from 1 to 3. 
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In a modified form, based on the observer time sense (Cawley, 1970) the 
parameter A has an interesting physical interpretation whose initial rami- 
fications this paper explores.'~ Roughly speaking, it is an indexing parameter 
for actual events, and the role of  the space-time formalism based on the 
Stueckelberg equations is to generate theoretical constructions from the 
patterns of  actual events. 

The simplest objects over a space-time S are the local abstractions of  the 
constant processes over S. I t  seems reasonable to define the elementary 
particles and photons of  S to be these. We do not discuss more general 
objects in much detail here nor do we study space-times more general than 
Newtonian and Riemannian. Spacelike 'objects'  other than measurements, 
e.g. tachyons, or possibly more complicated constructions, probably are 
important for elementary particle physics and maybe for astrophysics as 
well, so they are important from an observation theoretical point of  view. 
The problem of classifying space-times also is of  evident importance; but 
it seems too ambitious to attempt this now and we restrict our attentions to 
the most familiar of  these.~ 

In Section 2 we construct an observation theoretical basis for the 
Stueckelberg space-time equations. In Section 3 we derive a general form 
for Ls for a single particle and a single photon, under the definitions of  
Section 2. In Section 4 we develop the configuration space-time theories 
in external scalar, vector, and (rank two) tensor fields, and discuss the 
observer theories briefly. In Section 5 we formulate the canonical theories 
and in Section 6 we present a discussion based on accumulated results. In 
Section 7 we make some remarks and in Section 8 we summarize the paper. 
Finally in an appendix we sketch some important features of  a theory of 
observation based on a space-time approach. 

2. Physical Basis of the Space-time Equations for Localized Objects 

A. Space-time Ensemble Method 

The point (local) abstraction of a set of  experimental conditions expressed 
in an open statement~: a is an event, which it must be possible to place into 
correspondence with any point of  a space-time. In a process involving an 
elementary physical object we assume the observer asserts its actual 
existence:~ only at discrete instances, (a, - e,). He fills in the blanks in that 
direct knowledge in any single experiment by appeal to an ensemble of  
other experiments involving duplicate experimental conditions. The 

t In the elementary particle physics literature and in some textbooks on mechanics 
is sometimes mistaken for the particle proper time. 

:~ Much of the content of this paper is based on physical ideas about the relationship 
between a physical observer and his methods of observation. We refer to a certain 
structure based on these as the 'theory of observation' and we discuss its essential features 
in the appendix. Also we define certain terms there, such as 'process', 'actual occurrence', 
etc., which are employed in the text. 
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regularities of  the patterns of  the events is what guarantees the existence of 
the classification which defines the ensemble. From these regularities the 
observer infers the existence of various objects, which are constructions 
based on the characteristics of  the ensemble, at every space-time point 
intermediate between those of the actual observations. 

For  example, if  we label pairs of  events a, of  the same type by values 
Ax and 12 of an arbitrary parameter, this construction produces sets of  
homologous events, d = {a(1)It e (11,12)). Theoretical correspondences of  
the d( ) t )  to space-time points ea = e(1) generate those of  the sets. The 
closures1" of  the sets are the segments of  the world histories of  the corre- 
sponding graphs.$ 

This procedure of  theoretical inference based on actual observations 
defines the notion of  a physical object, and through the space-time corre- 
spondences grants to the observer the right to represent its history mathe- 
matically by a space-time graph. We may say that the existence of  an object 
is implied in the physical sense by the existence of the ensembles involving 
it, which is the reproducibility of  the corresponding experiments.w Turning 
the analysis around gives the meaning of this representation: I ,  ranging 
over a suitable point set, is an indexing variable whose boundary values 
label typical elementary observations. 

(It is interesting to observe our answer to the Berkeleyan question: 
How do we know of an object's existence at space-time points intermediate 
between those of the actual events, where no one is looking ? In the sense 
given, we know. And rather than being any more artificial than knowledge 
obtained f rom actual observations, that sense provides the basis for 
meaningful representation of those observations. I t  is the sense of  all 
physical knowledge, in this approach.) 

B. Physical Constructions 

The local abstractions of  the constant processes over S correspond to 
certain of  the sets d of  the example above. These are the sets A and A ob- 
tained from d by time ordering its points, when this ordering is invariant.[I 
Here, up to a sign, I is an invariant 'causal time' or better 'acausal time' 
associated with the two kinds of process to whose histories it belongs. 
We can define a particle (or photon) to be a set A constructed in this way 

t In general it might not be necessary to assume that ~ is a number or that it is real, 
though in this paper we do. The topology on the event sets may be defined by the topology 
of the ;~-space. Space-time correspondences of the open sets of events assert theoretical 
existence of the corresponding objects and so do those of the closed sets. The corre- 
spondences of the boundaries also assert actual existence, or actual occurrences of the 
events. 

$ Up to a possible ordering (see below). 
w We must understand by this that the ensemble represents an entire physical process, 

that is, a set of actual occurrences of a physical law. We note that this entails no restriction 
on the character of the object's history. 

II There are two relative orderings of {a(~)} and {e(~)}, when the points of the latter 
are identified with space-time coordinates assigned by observation theoretical procedures. 
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and its anti-particle (anti-photon) as the set .4, which means a particle 
(photon) of  another kind by symmetry since an ordering of ~ has no 
physical basis. The history of  a particle (photon) is a future-oriented 
timelike (null) curve. 

The space-time formalisms of  the present theory reflect the foregoing 
distinction between 'noumenal' objects d and physical objects A, .4. Thus 
the extended space Lagrangian formalism derived from an observer 
Lagrangian is a physical space, time formalism, while that deriving from 
the space-time trajectory Lagrangiansl- is a noumenal space-time formalism 
(Section 4, C). The analogous distinction is present also on the extended 
phase space. In fact, in a space-time theory all the physical constructions 
result from the classifications produced by noumenal constructions, and 
the noumenal formalisms form the basis for this procedure.:~ 

C. Definition of  Particle and Photon 

The primitive ideal constant process over a space-time is its observer. 
The theoretical possibility of defining the observer as a constant process in 
the presence of  his surroundings implies that of the existence of the single 
particle in these surroundings. So the latter plainly is required in the non- 
vacuous cases. In addition, over every space-time S, there exist with respect 
to S two classifications of  event pairs. These are the causally ordered and 
the causally unordered pairs. The theoretical possibility of distinguishing 
them actually against a given background exists if and only if the single 
photon can exist theoretically against that background, except for space- 
times which possess a degenerate notion of simultaneity, such as the 
Newtonian case, SN.w 

In the theory of observation Sn is distinguished by its degeneracy, which 
disentangles time coordinate assignments to events from those of the space 
coordinates. The simplest formal definition of  a Newtonian particle 
requires of  the equations whose solutions give its noumenal worldline the 
existence of an integral having the form 

f [(dx/d)t) 2] = constant (2.1) 

where the xU(A) are coordinates of e(A). Here we understand that 

(dx/dA) 2 = - (dx~ /d)O 2 (2.2) 

t We mean the 'Stueckelberg-Jacobi' Lagrangians introduced in Cawley (1970). 
The word noumenal has metaphysical connotations which are not related to our use 

of it. The noumenal objects do not exist theoretically nor actually. Nor is this an example 
of 'absolute' or 'a priori' existence, but of mathematical existence, which means relative 
to our theoretical procedure! 

w These observations reveal the reasons for which a particle interpretation to a general 
time evolving theory is a requirement imposed by a theory of observation, where the 
basic theoretical assumption is that the observer is physical. In the Schr/Sdinger picture 
of the quantum theory the particle interpretation to the state vector is its representation 
as a probability amplitude. In the Heisenberg picture this is provided qualitatively by the 
indeterminacy principle in the classical phase space. 
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We disallow explicit x-dependence in equation (2.1) in order to maintain 
the association of particle and process in its simplest form.'~ It keeps the 
scales of x ~ and l)t[ fixed along the curve. Explicit A-dependence can be 
transformed away by a reparametrization. 

Evidently we can replace equation (2. I) by 

�89 2 = constant  # 0 (2.3) 

where the restriction to nonzero  values guarantees that  spacelike objects 
will not  be particles. In  the Riemannian (metric) space-time f ramework 
we replace equation (2.2) by 

(dx/d)t) 2 = g,~(x) (dx"/d)t) (dx"ld)t) < 0 (2.4) 

Here we have dropped the restriction to nonzero values which appeared 
in equation (2.3) because the curves with 

(ax/da) 2 = 0 (2 .5 )  

are needed for  the photons .  As there is no causal role for Newtonian null 
processes, there are no Newtonian  'photons'.:~ 

We assume that  the worldline equations o f  a single particle and a single 
pho ton  are generated by a Stueckelberg action principle. For  Lagrangians 
containing no explicit )~-dependence the quantity, 

OLs(x, dx/d)O 
R(x 'dx/d)O=-Pa=(dx"/dA)  O(dx"/d)t) Ls(x, dx/dA) (2.6) 

is a constant.w We identify R(x, dx/dA) with the left sides o f  equations (2.3)- 
(2.5) and express the requirements embodied therein by writing 

R(x, dx/dA) = �89 2 (2.7) 

So for particles Pa > 0 and for photons  Pa = 0. For  both  particles and 
photons  we require that  e ~ be a constant  along the curve, where we under- 
stand that  x ~ is a time coordinate.  The constancy of  e ~ is necessary to assure 
the possibility o f  the association o f  particle with process and of  pho ton  
with null process. 

3. Single Particle and Single Photon Stueckelberg Lagrangians 

To solve equations (2.6) and (2.7) for Ls(x, dx/d)t) we write 

Ls(x, dx/d)t) = h((dx/dA) 2) + Is(x, dx/d)O (3.1) 

t See Section 6, B for discussion of a formal relaxation of this condition. 
.~ Evidently we are using the word photon in a particular sense, one suggested by the 

special and general theories of relativity. The statement of the text allows for Newtonian 
theories of light. 

w The arbitrariness of the indexing of events means that the parameter-history which 
links any two of them has no physical meaning except for that contained in the space- 
time trajectory. So in the Lagrangian theory for the nomnenal worldlines there must 
exist an indexing parameter A such that L~ possesses no explicit dependence on it. This 
guarantees the possibility of passing from a A-evolution scheme to one based on a space- 
time variable when the Lagrangian formalism is used. 
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Substituting (3.1) into (2.6) and using (2.7) we get 

2 Ols(x, dx/dh) 
h((dx/d ) ) + ls(x, dx/dh) = �89 2 (3.2) 

Choosing 
h((dx/d~t) z) = �89 2 (3.3) 

in equation (3.2) the equation for ls becomes 

Ols(x, dx/dh) 
(dxU/d?t) ~(dx~--/- ~ ls(x, dx[dA) = 0 (3.4) 

whose integral surfaces are given by 

~ ( x ;  l~ 1 . dx/d?t) = 0 (3.5) 

where o~ is an arbitrary function. Equation (3.5) shows that ls is a homo- 
geneous first-degree function of the velocities dxU/dA; we write 

Is(x, dx/d?t) = L(s')(x, dx/dh) (3.6) 

and we find that the Stueckelberg Lagrangian for a single particle or a 
photon must be of the form 

Ls = �89 2 + L(st)(x, dx/dA) (3.7) 

4. Theories o f  Configuration Particles 

In this section we begin by studying some examples of Stueckelberg 
equations for particle and photon space-time curves, paying particular 
attention to external fields and to the constancy of E ~ Then we discuss the 
observer representations and the extended space noumenal and observer 
formalisms. 

A. Stueckelberg Level: Constancy of  E ~ External Fields 

(1) Riemannian Space-times 
We consider the locally Minkowskian Riemannian space-times, SR, 

with symmetric affine connection, wherein for every point e coordinate 
systems exist in which the metric tensor has the form 

gv~ = ~7~ + hv~(x), all x (4.1 a) 
with 

hr, = 0, hv~.a = 0, at e (4.1b) 

and where the ~/~ have the values of the diagonal Minkowski metric tensor. 
These are the locally inertial (Cartesian) systems for the point e. 

From equations (2.6) and (2.7) we have 

gv~(dxV/dh) (dx~/dh) = -2pa = - in  2 # 0 (4.2) 

for particles. The curve generated by Ls cannot reverse direction in time at 
any point. If we assume it does at the point e0, and that locally inertial 
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coordinates are chosen with hv~(eo)= 0, then dx~ = 0 together with 
equation (4.2) implies 

3 
(dx~/d)O 2 = - m  2, at e0 (4.3) 

i=1 

and this cannot be satisfied. The classification of the curves on SR generated 
by this result, which has been obtained in a geometrical class of coordinate 
systems, exists in any coordinate system. 

But the generalization of equation (2.3) as embodied in equation (2.4) 
is too great unless the g~  satisfy conditions which relate local and global 
properties of the space. Without some restrictions, Ls can generate closed 
curves timelike at every point, as in the example of the de Sitter space with 
negative curvature (Synge, 1966). Such a space is not a space-time because 
all of its points are not ordered partially by processes. Henceforth we 
assume that SR is a space-time in our sense. We note that the restrictions 
on the g~v might depend upon Lts 1) in general. 

For photons Pa = 0, equation (4.3) gives the vanishing of the remaining 
first derivatives with respect to ~, and we have 

dx"/d?, = 0 (4.4) 

at this point. The situation is more complicated than for particles now and 
we must distinguish the cases Lts l) = 0 and L~s 1) ~ 0. In the first instance the 
Euler-Lagrange equations based on equation (3.7) give 

dE Xt~ dxg dxZ (4.5) 
d~ 2 -- _gtW[p, a'r] dA d)~ 

where gUPgp~ = 3~u, which is the Kronecker 3, and the symmetric three- 
index symbol is given by 

[p, at] = �89 + go*.~ - go,,o] (4.6) 

commas denoting differentiation by the indicated variables. Equations 
(4.4) and (4.5) show that all derivatives of xU(h) vanish at e0 and the curve 
therefore degenerates to the uninteresting case of the constant map, into 
a single space-time point. So again there is no reversal of the sign of 
(dx~ at any point of the curve and the corresponding geometrical result 
follows as before. 

If  the presence of 'an external vector field"~ is represented by equation 
(1.1), the right side of equation (4.5) contains an additional term propor- 
tional to dx/dA and again e ~ is constant for photons. But tensor and scalar 
fields are less straightforward. 

The analogs of (1.1) for tensor and scalar fields respectively have 

L~s 1) = g[(dx/d)t)2l-l/2(dx~/d?,)(dx~/d)t) G~v(x) (4.7) 

L(s ,) = f ](dx/dA)2[,/2 ~b(x) (4.8) 

"~ We consider the meaning of terms such as this in Section 6. 



108 ROBERT G. CAWLEY 

but the variation procedures involving these are not well defined for photons 
(Cawley, 1970). On the other hand, the Lagrangian given in equation (1.2) 
does not generate the history of a particle and neither does its tensor analog, 
which is the one suggested by the Whitehead theory of gravitation, namely 

Ls = �89 2 + (dxU/dA) (dxV/d~) h~v(x) (4.9) 

The trouble is that neither has the form of equation (3.7).t 
The flat space-time particle trajectory Lagrangians$ issuing from the 

'phenomenological' coupling of (4.7) have the same form as the weak field 
expansions of those stemming from the Einstein form (Lts ~) = 0) with 
g~v given by equation (4.1). This is also what results from the flat space-time 
weak field expansion of the Whitehead form, equation (4.9). So the same 
lowest-order effects as those produced by (4.7) and (4.9) can he had by 
taking L~s l) = 0 and choosing guy appropriately. Then the effect of any 
external tensor fieldw is represented as a transformation of the space-time 
metric. 

The effect of an external scalar field can be introduced in the same way. 
Here the two space-times are conformally related. I f  g~v is the metric in 
the absence of the external field and H ~  is the transformed metric, we have 

Ht,~(x) = r 2 g,~(x) (4.10) 

where or(x) is the scalar field. To keep the metric signature constant a(x) 
must be nonvanishing. 

The weak field expansions of Lagrangians deriving from (1.2) and (4.8) 
bear to the Lagrangians generated by (4.10) relations analogous to those 
existing in the corresponding tensor field cases. 

(2) Newtonian Degenerate Space-time 
The Lagrangian (3.7) with the quadratic term (2.2) gives the space-time 

trajectory Lagrangians,l] 

Lss = ~:mx'~ + x'(~). C(x(cQ, x'(e)), m = +(2pa) 1/2 r 0 (4.11) 

where ~ is an arbitrary but definite parameter'[[ and primes denote differen- 
tiation by ~. The sign is ( - e  ~ and the C,  are given by 

a/g ~(x, x') 
C. (x , x ' ) -  O(x,U) (4.12) 

t Nevertheless, the worldlines of point planets and photons do not reverse direction 
in time for the case in which h w is determined by a spherically symmetric mass distribu- 
tion. But see Section 6, B where the analogous scalar field case is discussed. For a lucid 
exposition of the flat space-time Whitehead theory see J. L. Synge (1951, 1952). A general- 
ization to a class of such theories is given by A. Schild (1956). Whitehead theories on 
curved space-times were discussed by G. Temple (1924). 

:~ See footnote t on p. 104. 
w See footnote on p. 107. 

I I By x'. C in equation (4.11) we mean ~ x'" Ct,. 
i t=0  

�82 A function of the x ". 
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since the partial derivatives of L(sl)(x, dx/d)t) by the (dxV/dA) must be 
homogeneous zero degree functions, whence follows their independence 
of~' .  

The first term of equation (4.11) is an ~-derivative and so has no effect 
on the equations of motion for any given choice of 0~. Yet it is not supposed 
to vanish there because of the condition, m # 0l The source of this peculiar 
restriction is the defining condition for the noumenal worldline of a particle, 
in particular the inequality in (2.3) whose purpose is to assure the constancy 
of ~0. (See also Section 6, A.) 

A possible form ofLts 1~ is 

L(s 1~ = �89176 -1 + q [(dx/dh). A(x) - (dx~ V(x)] (4.13) 

where M and q are constants and where we suppose that A(x), V(x) trans- 
form as representations of the homogeneous Gallilei group (Levy-Leblond, 
1967): 

A(x) ~ RA(x) and V(x) --> V(x) + v. RA(x) 

where R represents a rotation and v parametrizes the boost. Then the 
coefficient of q in equation (4.13) is a Gallilei invariant. Though the first 
term of equation (4.13) is not invariant, the effect of a space-time coordinate 
transformation is to add to L(s 1) a h-derivative, which has no effect on the 
curve generated by the equations of motion nor on the value ofpa. 

B. Observer Theories 

The observer Lagrangian is introduced through the observer action 
(Cawley, 1970), which is an integral over increasing time rather than 
increasing )~. With ~ = x ~ - t the two observer Lagrangians corresponding 
to (4.11) are 

Lff > = - m  4- [C0(x, 2, t) + :t k Ck(x, ~, t)], m ~ 0 (4.14) 

the dots denoting differentiation by t. With the choice of equation (4.13), 

L ~  ~ = - m  :t: [�89 2 + q(~:. A(x, t) - V(x, t))] (4.15) 

Equation (4.15) is strikingly different from the forms resulting from 
equation (1.1) for special relativistic particles, namely, 

L~ ) = -m(1 - ~2)1/2 _[_ q [/~.A(x, t) -- A~ t)], m = +(2pa) 1/2 # 0 

(4.163 

The equations of motion following from (4.15) are the same for each of the 
two signs; those following from (4.163 transform into each other under 
reversal of the sign of q. In the latter the 'rest mass' of the particle is m; 
in the former the 'inertial mass' of the particle is M. We observe that m > 0, 
but that the sign of M is arbitrary. 
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For  photons there is an additional 'causal energy' coordinate (Cawley, 
1970) to associated with the singular character of the condition Pa = 0. 
Choosing x ~ for the time again, the observer Lagrangians are 

L ~ '  = �89 [rSk :r X* -- (1 -- 27k :~)]. (--go0) 

• q[~sk:dA k - (1 - 2 r ,  &*) A~ (-goo) (4.17) 

where ~,, = (-goo) -1 . go, and ~'s, = (-goo) -1. gsk. The domain of  to is the 
positive real axis (0, oo). 

The constancy of  ~o on SR results in the impossibility of particle speeds 

V = [l=~ 1 (dxt/dx~ I/2 

in excess of  one in locally inertial frames, anywhere at any time (e0). For  a 
photon the effect appears as the impossibility of motion in which to passes 
through zero, in any coordinate system. These impossibilities are logical 
ones in the present framework. Space-like objects like tachyons, which 
transmit energy and momentum, are not particles in the conventional causal 
framework.? 

On SN no analogous space-time kinematic restrictions on particle motions 
result from the constancy of E ~ 

C. Extended Space Formalisms 

There are two classes of  extended space (configuration space-time) 
formalisms, that of the noumenal formalism which derives from the two 
Lss taken together, and that of the observer formalisms, one for each L~. 
Examples are the free particle Minkowski configuration observer Lagran- 
gian, which is the same for particle and anti-particle, 

L ~  )' = - m  [-x'(z) 2] 1/2 (4.18) 

and the corresponding noumenal Lagrangian pair 

L.r = :Fm[-xt('r)2] 1/2 (4.19) 

where r is a free parameter and x'(r) = dx('r)[d-r, and where we have reset 
t = x ~ The noumenal Lagrangians for particles have the same forms as 
the trajectory Lagrangians Lss, but that is not true for photons. The free 
Minkowski photon noumenal Lagrangians are 

L ~  = •176 -1 . (x'(~-)) 2 (4.20) 

while 

Lss = :~2to. (x'(a)) 2 (4.21) 

All configuration space-time Lagrangians are homogeneous first-degree 
functions of  the ,r-derivatives. 

? R. G. Cawley (NOL prepdnt, under revision). 
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5. The Factorization Condition and Canonical Particles 

In Section 4, A we pointed out certain problems with naive representa- 
tions of the effects of external scalar and tensor fields. These disappeared 
in the approach through the space-time metric. In this section, which 
constructs a theory of 'canonical particles' as opposed to that of the 
configuration particles of the previous section, the external vector fields 
turn out to be troublesome. 

A. Noumenal Canonical Formalisms 

A A-evolution theory would be a 'Super-causal' theory to be used by a 
Big Observer whose 'space-time' is five-dimensional. His 'space' would be 
four-dimensional and would have an indefinite metric. This is the wrong 
physical interpretation of A for the present approach, so we don't pursue 
the matter of a Hamiltonian formulation of the Stueckelberg equations. 
Canonical formalisms based on the noumenal Lagrangians also give 
A-evolution theories, but they can be converted to time evolution theories 
under certain conditions. Our procedure is to regard the extended phase 
space as a noumenal space-time and require the existence of the particle 
and anti-particle classifications in the noumenal canonical formalism. We 
discuss the canonical formalism first, by means of an example. 

For the Newtonian case, corresponding to equations (4.11) and (4.13), 
the canonical constraints which stem from the extended configuration space 
noumenal Lagrangian pair are~ 

F(+) =P0 + H (+-) ~ 0 (5.1) 
where 

H (+-) = HN(X, p, X ~ • m (5.2) 
with:~ 

HN = (2M)-~(p - qA) 2 + qV, M ~ 0 (5.3) 

and where the p~ are defined in the usual way from L.r .  F(+) and F( - )  
cannot vanish simultaneously since m v ~ 0 so the surfaces, 27 + and 27-, 
defined by equation (5.1) are disjoint. Hence their product also is a con- 
straint, the statement of its vanishing still being a weak equation, 

F = - F ( + )  F ( - )  = -(Po + HN) z + m z ~ 0 (5.4) 

Up to multiplication by an arbitrary nonvanishing function u, F is the 
noumenal total Hamiltonian, which generates the translations in ~-.w 

i" The wavy equals sign denotes weak equality in the sense of Dirac (1950, 1958). 
We do not discuss the complicated case M = 0 in this paper. 

w Starting from a Lagrangian formalism the restriction u 4= 0 is always possible and 
it assures that the canonical formalism will not be pathological. If u vanished at ~- = ~'o 
for example, the Poisson bracket equations would give the vanishing of all the z-derivative~ 
of all the canonical coordinates at the corresponding point, which would introduce an 
artificial singularity into the formalism. 
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The canonical equations of motion based on 

OH,, 
x ' ~  [x, uF] ,~ -2u(po + HN)-~-  O 

X 0' 

(5.4) are 

aHN 
,~ q: 2mu ap 

,~ T 2mu 

p' ,,~ 4- 2mu - g "  

OH,, 
Po' "~ • 2mu -a--a (5.5) 

O X  v 

where we have used equation (5.4) to eliminate the factors of p0 + HN from 
the last members. Particle equations for time evolution may be found by 
dividing all the equations by the second, a procedure whose possibility 
depends on the condition m # 0. 

In the general case, the infinitesimal generators of the z-translations in 
the particle and anti-particle constraint hypersurfaces 27 + and 27- are 
proportional to F(+) and F(-) .  If the 'z-evolution' is factorizable into 
distinct particle and anti-particle components, the change of an arbitrary 
function of the canonical coordinates induced by the commutator of any 
two r-translations, one corresponding to a canonical transformation of the 
points of 27+, the other to a canonical transformation of the points of 27-, 
should vanish. Since the infinitesimal generator of the commutator of two 
such transformations is proportional to the Poisson bracket of F(+) and 
F(-) ,  that condition is expressed as 

{F(+), F(-)} = 0 (5.6) 

The existence of the distinction between the two classes of space-time 
curve in the canonical formalism is the existence of the classification in 
that formalism. We take the factorization condition, equation (5.6), as a 
defining condition to be obeyed by the histories of particles and photons 
relative to the phase space-time. This is in addition to the conditions leading 
to 27+ f'l 27- = ~,  which are the defining conditions relative to the con- 
figuration space-time. Evidently equation (5.6) is satisfied identically in 
the Newtonian examples just discussed. 

From the Riemannian space-time particle Lagrangians with L~s '~ = 0 
we get equation (5.1) again. We have 

H(_+) = _ykpk • [(ykpk)2 + Vjkpjpk + (_g00)-* m2]1/2 (5.7) 

where y~= (_gOO)-lgOk and yjk= (_gOO)-lg~k. As before F(+) and F( - )  
cannot vanish jointly for any space-time point (and arbitrary p~) because 
they cannot do so in the locally inertial coordinates for that point. So the 
vanishing of (minus) their product is again a constraint, 

: F = (_gOO)-l(p2 + m 2) ~ 0 (5.8) 

and Z '+ t3 Z'- = ~.  
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U p  to a multiplicative factor,  finite and nonvanishing on Z '+ U 27-, the 
factor izat ion condition, equat ion (5.6), gives 

2yk,s(y s ~/ + ~,S*)pkp, + (0o - yk Ok) [(?,p,)2 + ~,mptpm q_ (_gOO)-I m z] = 0 

(5.9) 

I f  F is a connected curve in 27 + tA 27-, then equat ion (5.9) is satisfied in 
Fermi  coordinates  (Synge, 1966) with respect  t o / ' ,  a t  every point  o f  F'. 
Hence it is satisfied in any coordinates,  everywhere along ft. S i n c e / "  is 
arbi t rary  there are no connected curves in 27 + U Z ' -  on which equat ion 
(5.6) fails, so the condit ion is satisfied. Hence  all the canonical  particle 
condit ions are met.  

Fo r  photons ,  with L~s ~) = 0, the analysis starts f rom equat ion (4.20) and  
is slightly more  complicated.  Equa t ion  (5.1) results again for  the same 
reasons as before, but  now there is an addit ional  p r imary  constraint  

Po, ~ 0 (5.10) 

To  get the forms of  H (-+) we take ~ = x ~ = t in equat ion (4.21), gett ing.  

Lss = ~2 oJ( goo + 2 g ok V k -Jr" g jk VJ Vk ) (5.11) 

where v k = dxk/dt, whence 

4-oJ-lPk = g0~ + gj~ vJ (5.12) 

The functions H (+) are got  f rom 

H (+) = Pk V k -- Lss = • + gjk v s v k) (5.13) 

by solving equat ions (5.12) for  the vL Inspecting the expression o f  the 
solution as a rat io of  determinants  we see that  it has the fo rm 

v ~ = q-~o -1 D J + E J (5.14) 

where D J and  E J are functions of  the g~v and the Pk. Substituting (5.14) 
into (5.13) we have 

H (+) = •176 oJ + a (a) • a (2) ~o - l  (5.15) 

where 

a ( ~ 1 8 9  a ~  "j, a(Z)=�89 J (5.16) 

so 

F ( •  =P0  + a(l) • (a (~ + a ~2) oJ-l) (5.17) 

and  the corresponding total  Hamil tonians  are 

FT(• = uF(•  + vp,o (5.18) 

with u and v arbi t rary  functions. 
We see by equat ions (4.1) that  for  any space-time point  a (~ > 0 in locally 

inertial coordinates  for  that  point,  and hence in any coordinates.  By the 
8 
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same argument a (2) > 0 also, unless p,  = 0 for all k. The consistency 
condition Po,' = dp,o/dr ~ 0 generates an additional constraint via 

{Po,, FT(• g u{po. F(• g 0 

namely, by (5.16), 

- a  (~ + r  C2) ,~ 0, or ~ - -  (aC2)/a(~ 1/2 ,~, 0 (5.19) 

but no further constraints develop from the remaining consistency con- 
ditions. 

Since the domain of definition of ~o as a coordinate excludes the origin 
there can be no motion in which all the Pk vanish simultaneously because 
equation (5.19) then would not be satisfied. Thus the consistency condition 
implies the existence of an inaccessible region of the x ~, p# part of the 
extended phase space, defined by the vanishing of the photon's spatial 
three-momentum. Therefore we may redefine the photon phase space to 
exclude this region and then set about eliminating the r P~o coordinate 
pair. This is possible because the constraints (5.10) and (5.19) are second 
class. Equation (5.18) becomes 

FT(• = uF(+) (5.20) 

where 
F(• = P0 + a ~ • 2(a(~ a(2)) 1/2 (5.21) 

and the equations of the eliminated constraints reduce to mere definitions 
of co and Po, in terms of the remaining coordinates x~, p~. 

On the new phase space F(+) and F( - )  cannot vanish simultaneously. 
Moreover, Po does not vanish anywhere on 27 + O 27-. To see this, observe 
that under (5.21)Po = 0 gives 

(O. E) 2 = O. O + (D. D) (E. E) (5.22) 

where the 'scalar' product is defined through the positive form determined 
by the yjk [introduced in equation (4.17)]. But equation (5.22) cannot be 
satisfied since the second term on the right is larger than, or equal to, the 
left-hand side and the first term is positive. So the four vector p~ does not 
vanish on the noumenal constraint hypersurfaces. In addition these are 
disjoint, and the product of F(+) and F( - )  is again a constraint. In time- 
orthogonal coordinates it is easy to get 

-F (+ )  F ( - )  = F = (_g0O)-, p2 ~ 0 (5.23) 

The factorization condition, equation (5.6), now gives another equation 
of the type of equation (5.8), namely one which equates to zero a function 
first degree in the derivatives of the g~v. This can be seen by inspection of 
equation (5.21) if use is made of the fact that a tl) is a first degree homo- 
geneous function of the Pk, as may be determined from equations (5.12) 
and (5.14). The same argument as before shows then that the factorization 
condition is satisfied, so all the canonical photon conditions are met. 
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B. External Vector Fields 
Let S be the Minkowski space-time SM and let Ls be given by equation 

(1.1). Using the notation of equation (5.1) we find 

H (+) = • - qA) 2 + m2] 1/2 + qA ~ (5.24) 

for particles. Whence 

{F(+), F( - )}  = 2{[(p - qA) 2 + m211/2,po + qA ~ (5.25) 

and equation (5.6) is not satisfied unless 

qE. (p - qA) = 0 (5.26) 
where 

E =-OA~ - OA/Ox ~ (5.27) 

Equation (5.27) cannot be satisfied in all inertial coordinate systems 
unless A u is the gradient of a scalar field, but in that case L~s 1) is a A-derivative 
and it can be transformed away without affecting the Euler-Lagrange 
equations. So canonical particles in the presence of a nontrivial external 
vector field do not exist in the present theory. The same judgment holds 
against the canonical photons. 

C. Time-evolving Forms of the Canonical Constraints 

In equation (5.1) the coordinate P0 is conjugate to x ~ modulo L~r 
This means that for the upper sign the forward time translation generator 
on the space of x k, Pk is H ~  ) = H (+), which is determined from L ~  ), while 
for the lower sign the forward generator H ~  -) is got from L~ -). The observer 
representations of  the extended phase space constraints corresponding to 
(5.1) thus are 

. z : z ( -  + )  
Ft , ( i )  = Po -r" ~ ~ ~ 0 (5.28) 

For  the free particle on SM, Fs2(+) = F•(-), so 

_ .  + H (+) m2)1/2 Ft , ( i )  -~'0 ~ =Po + (p2 + ~ 0 (5.29) 

while for the case of SN, 

H ~  ) = m + H~ +) (5.30) 
where 

H~N +) = •  q: qA) 2 • qV (5.31) 

We observe here that 

H~-)[m;q, M] = H ~ ) [ m ; - q , - M ]  (5.32) 

We remark finally that for a given process on SN characterized by a 
value for m, this parameter can be absorbed into P0 in equation (5.28), by 
the transformation 

Po -+Po =Po + m (5.33) 



116 ROBERT G. CAWLEY 

But this transformation does not produce the same effect in equations (5.1) 
or (5.4). 

6. Discussion 

A. Geometry and Dynamics 

A dualism of the present theory is the following. On the one hand it 
deals with noumenal formalisms which derive from classifications of 
space-time geometrical objects, and on the other hand it deals with time 
evolving systems of the observer's causal representations. This fact has 
underlain the approach to mechanics which the present paper has adopted 
and it has implications for the meaning of  the results we have obtained. 

(i) The existence of the causal masses, always nonzero and by an arbitrary 
convention always positive, is the consequence of the existence of the 
corresponding classifications of timelike physical processes. The same 
relationship holds between causal energies and null process classifications. 

The observer's representation of a process is as a causal unfolding of 
events. The positive definiteness of oJ or constancy of m for a process thus 
expresses a 'causal conservation law' for the process. If  the causal mass of 
a photon is defined as m0 = E(oJ) = 1, the law asserts the conservation of 
causal mass in every constant process. 

(ii) A universal (i.e. completely unspecified) Newtonian constant process 
is generated by the example L~s I) = 0. The space-time curves are timelike, 
but otherwise arbitrary, and the time evolution of the process is divorced 
entirely from the motion of  the spatial coordinates of the corresponding 
particles. This result is expressed in the form of the observer Lagrangians,1" 
L } p  = = - m  # 0. 

The corresponding class of curves on SR is that of the causal (i.e. timelike 
or null) geodesics, which is presumably only a subclass of  the class of  
constant process curves. So apparently there is not an analogous 'universal 
Einstein process'. 

B. Remarks about Generalizing Equation (2.3) 

There is a formal similarity between schemes which start from equations 
(1.2) and (4.10). Taking g~  to be the flat metric ~u,, the former gives 

Lss = ~?ms(-X~)l/2(1 + 2ams 2 q~(x)) u2 (6,1) 

where the subscript designates the metric, and where ms - +(2pa) u2; the 
latter gives 

Lsj = :~mg(x)(-x~2) 1/2, cr > 0 (6.2) 

t The point of view is quite important to the understanding of a result like this, namely 
that Lg ~:) = -m :# 0. If a curve, however arbitrary, is given at the level of the noumenal 
formalism, it is a logical requirement that it not disappear from derived formalism. 
L~ ~) is not 'a Lagrangian' but an observer Lagrangian. While m will show up in the ob- 
server action, it seems troublesome that the latter is not Gallilei invariant. 
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The two Lagrangians are equal if 
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m = ms and 0 ̀2 = 1 • 2m~ 2 a9 (6.3) 

The condition 0`(x) # 0 gives 

ms z + 2a9 # 0 (6.4) 

if ms # 0, which we recognize as the restriction which prevents the tangent 
vector from changing its signature along the trajectories of (6.1) since 

---~(dx/d,~),~ 2 = p~ + a~(x)  (6.5) 

We note that the left side of (6.4) depends explicitly on the process para- 
meter, ms. 

From equation (6.5) we observe that the flat space-time formalism 
deriving from (1.2) and satisfying (6.4) may be regarded as based in a 
generalization of equation (2.3) to the case where the right side is allowed 
to be a function of x, but which now is required to be nonvanishing. This 
corresponds to allowing A, and therefore the propositions aM, open over 
SM, to be functions of the coordinates x u of the points of SM. The realization 
of such a procedure, which makes the coordinates of SM physical objects, 
in this case can be accomplished by introducing another space-time 
whose processes can supply this physical meaning! 

The conformally flat space-time SR, having g~,v = o2 ~h,v, serves the pur- 
pose, and a conformal regraduation (Walker, 1946; Nariai & Ueno, 1960; 
Dicke, 1962) defined by 

(dx/dA)n z -+ 0`2(dx/d)O, 2 (6.6) 

where 0̀  is given by (6.3), reduces (6.5) to (2.3). Under the transformation 
(6.6) the aM(X) must be mapped into events aR, whose characterization no 
longer requires specification of the coordinates. 

There is a disadvantage to the SM theory in the canonical formalism, 
where we have 

F(• =Po • (p2 + ms z + 2ag)l/z (6.7) 

By (6.4), 27 + tq 27- = ~ ,  but equation (5.6) is not satisfied unless ag,~ = 0 
or, barring the trivial case where a = 0, unless 9(x) is a constant, which is 
equally trivial. 

C. External  Fields and Relativity o f  Space-times 

A physical process occurs against the time evolving background of the 
rest of the world, which at bottom the observer must define by the same 
ensemble methods he uses for all processes. We have not considered the 
background from this point of view in the present work, but instead have 
contented ourselves with a model representation, loosely characterized as 
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an external field. The examples of Section 4 serve to illustrate some of that 
looseness, and in addition we offer the following further observations. 

(i) The prototype external field is the one given in equation (4.15), 
which is supposed to describe a certain class of Ss-theoretical processes. 
If  we regard it as an attempt to represent some given system, then the 
description it gives represents a 'view from Sn'. A view of this system 
from SM, or of another system analogous to it under a suitable test, is 
provided by equation 0.16)., In the mechanics of particles, but for an 
occasional theoretical aberration, the only other physically interesting 
example of an external field is that of  gravity on SN, which is described by 
equation (4.15) as the case A = 0 and V oc M ( M S  0). So it is enough to 
focus attention on cases related to that of equation (4.15). 

(ii) There are two ways to view the relationship between a given pair of 
observation theoretical schemes. From the standpoint of 'logical integra- 
tion',t  they are converging or diverging theories. In the cases typified by 
equations (4.15) and (4.16), for instance, one is the 'nonrelativistic' (i.e., 
Ivl -~ 0) limit of the other or the other is a generalization of the one. From 
the standpoint of 'logical differentiation't they are parallel structures, 
parametrized in this case by the value of S, and having distinct physical 
notions entering the descriptions they represent. Thus the theoretical 
structure of Ss provides the physical (i.e. space-time geometrical) notions 
of distance (expressed by Newtonian rigidity of measuring rods), thence of 
relative velocity, of inertial mass (through the mass dichotomy and the 
kinetic term proportional to M). On the other hand, with respect to SM 
distance as a physical notion is replaced by that of spacelike interval 
(proper length) and velocity by two-way velocity (twin paradox). The 
distinction of m and M gives way to the single notion of the causal (or 
'rest') mass, m. 

(iii) Logical integration is used to secure the physical interpretation of 
phenomena in the general theory of relativity, where the curvature of the 
metric is represented as the 'effect' (sometimes 'cause'!) of 'external 
gravitational fields' in the tangent spaces, SM. This is accomplished by 
identifications which rely upon interpretation of the terms of a Lagrangian 
decomposed into a 'kinetic' part like the first term of (4.16) and an 'external 
field' part like the second; e.g. equations (4.1a), (4.7), or (4.9). These in 
turn rely upon a program for logical integration between SM and SN. 

In the usual attempts at theoretical extrapolation the starting point 
involves a selection of observation theoretical notions which exist for the 
context of the limiting theory. For example, the physical notions of gravi- 
tational and inertial mass, defined by the correspondences to objects and 
processes of Sn, are used to express the principle of  equivalence. Under the 
logical differentiation which attends the appearance of a new observation 
(i.e. space-time or matter) theoretical framework, such physical notions 
may become altered or even disappear. Thus, viewed from SR, the principle 
of equivalence seems meaningless owing to the fact that the notion of 

"~ These terms are drawn from the language of Tisza's (1966) 'logical analysis'. 
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a gravitational field is replaced by a space-time geometrical structure 
effect.t 

It is reasonable to expect other effects of logical differentiation, in 
particular such as may involve external fields and background like that just 
discussed between SN and SR. In the representation given by equation (4.9) 
of an alleged external field on SM the classifications of the curves are not 
those of particles, that is )t depends on x. In the case of equation (4.7) the 
field is not external, in this sense: that for processes the Stueckelberg action 
principle and Ls have explicit pa-dependence, being undefined for those 
processes havingpa = 0. Neither of these features is present in the approach 
to the space-time classification problem that proceeds through the metric. 

(iv) It is in the consideration of spacelike phenomena, namely forces, 
that one is led to the external field representation of the background on SN. 
As far as we know there is no comparable theoretical basis for the external 
field representation over any Riemannian space-time, including SM. The 
problem is the lack of a degenerate simultaneity and the apparent con- 
sequent absence of an appropriate nonlocal version of Newton's Third Law. 
It is in fact for precisely this reason that the notion of force in the special and 
general theories of relativity generally has been abandoned in favor of the 
external field idea, and the SN theoretical structure obviously is the starting 
point for this. 

Evidently these procedures represent extrapolation attempts from the 
limiting SN theories, and the theories which have been obtained historically 
by this procedure are not unique. Thus for gravitational phenomena the 
external tensor field gave way to the SR theory while for electromagnetism 
it gave the Maxwell vector field theory on S~. For theories of configuration 
particles the process and anti-process classifications factor in each of these 
cases while for canonical particles in the latter case they do not, according 
to the result of Section 5, B. In the spirit of the discussion presented in the 
rest of this section, this result presumably reflects a logical differentiation 
effect which attends the passage from the S~ configuration theory to the 
SM canonical theory in the case of the external vector field representation 
of the background. No analogous differentiation effects are reflected in 
the corresponding pair of SN theories. 

(v) In the Riemannian examples we have discussed where the noumenal 
Lagrangian particle formalism produces a noumenal canonical particle 
formalism, which, modulo a gauge transformation, is the vanishing vector 
field case, the causal mass disappears from the configuration equations of 
motion. But it does not disappear from the corresponding canonical 
formalism as equations (5.1), (5.7) and (5.8) show. The same is true for the 
SN formalisms. For photons, when the causal energy coordinate oJ is 
removed from the canonical formalism, the restriction which appears on 

t So we add our voice to the theoretical din concerning this point:  The assertion that  
the principle of equivalence is meaningless in the context of SR may or may not be right. 
Its observation theoretical meaning is well defined over SN however, and the physical 
existence of inertial masses and gravitational fields is assured by the actual data ! 
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the domain of definition of the momentum variables produces a universal 
unit null causal mass, m o =  IP0(p2)-I/21 = 1, which again is an object 
present in the canonical formalism. 

7. Remarks 

The vector fields are extremely important in physics and also have been 
persistent troublemakers. The extraordinary theoretical circumstance rep- 
resented by quantum electrodynamics may be an example of this. Gauge 
theories, full of ubiquitous theoretical problems of one kind or another, 
but which almost certainly work well(!) in some sense have not been confined 
to the case of electromagnetism. These problems deserve and get con- 
siderable attention and in the present approach we have uncovered what 
looks like another one. The last sentences of Section 6, C (iv) identify this 
as the problem of finding a canonical particle theory on S~t (or SR) whose 
configuration theory on SM (or SR), in some limit, is described in terms of 
coupling to a background vector field.? 

The difference between corresponding SN and SM canonical theories 
seems curious in this regard. We are reminded of the discovery of Jauch 
concerning gauge invariance and Gallilei invariance in the Hilbert space 
framework of quantum theory (Jauch, 1964). We may speculate that there 
is some connection between this result, the observation of Section 6, C (v), 
and the business about causal and inertial masses between SN and SM 
[Sections 6, C (i) and (ii)], but at the moment we do not know what this 
might be. 

Finally we remark that the present formalism is "observation theoretical" 
rather than 'classical'. 

8. Summary 

We have developed the theories of the single particle and the single 
photon as local abstractions of physical processes over Newtonian and 
Riemannian space-times, SN and SR. The observation theoretical formalisms 
are constructed by space-time ensemble methods. To every noumenal 
particle (photon) classification there corresponds two particle (photon) 
types, defined by the two possibilities for the ordering of the noumenal event 
labelling index A relative to the causal ordering of the time coordinates. 

The existence requirement for the same classifications in the noumenal 
canonical formalisms also includes a factorization condition on the extended 
phase space. The condition is not satisfied in this case for particles or 
photons in an external vector field on SR, but it is satisfied if L~s ~) = 0. It is 
always satisfied on SN. The domain of definition of photon momentum 
coordinates is restricted by these existence requirements to exclude zero 
spatial momentum and zero energy. 

"~ The results of Section 5 hold for SR in general and in addition entail no assumptions 
about field equations for A~'(x). 
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The observer representations of these conditions are that no particle 
goes faster than light in locally inertial frames on SR and no photon motion 
with vanishing (causal) energy is possible. In the present scheme these are 
logical requirements, rather than physical requirements. On SN there are 
no corresponding observer representations of  these restrictions in the 
particle equations of motion. 

The causal mass is conserved in every constant process. On SN, the 
causal and inertial masses are distinct. In the absence of external vector 
fields on SR the causal mass disappears from the configuration equations 
of motion in the treatment of external scalar and tensor fields through the 
metric, but it appears in the corresponding canonical formalisms. The 
same is true for the examples studied on SN, although m can be transformed 
away in the time-evolving canonical theory of the observer. 

Finally we have not considered curved space-times tangent to SN, but 
we think it would be worthwhile to do this (Havas, 1964). In addition it 
would be interesting to work out the SN-theories of the M = 0 particle. 
And in the case of SR we have not considered questions which might arise 
when there are singularities, either in the coordinates or in the geometry 
(respectively, at the Schwarzschild radius or at r = 0 in the example provided 
by the Schwarzschild geometry). 

Appendix 

The office of a theory of observation is to represent those procedures of 
physical observers which determine the essential structure of  physical 
theory. Our effort to construct such a theory is unfinished, but its broadest 
outlines, which we summarize here, seem clear. We already have discussed 
in some detail the physical motivation for the approach, which is to identify 
an absolute causal ordering with an invariant time ordering in the context 
of  a conventional space-time framework.t  The formalism which appears 
to be most natural for these purposes is that of mathematical logic. 

We use designatory expressions or open propositions a for theoretical 
descriptions of experimental conditions. The logical variable e takes values 
which are domains or points of a space-time S, and the propositions (a - e) 
assert correspondences of the conditions to the domains. We identify the 
actual (observed) existence or occurrence at e of  conditions described in 
a with the truth of the proposition (a - e). 

We postulate an absolute invariant cause-effect ordering defined so as 
to coincide with an invariant overall time ordering. A physical law is an 
invariant causally ordered pair of  open propositions, a =~ b, the cause a 
'formally implying' the effect b. We identify the actual (observed) occur- 
rence at the ordered pair (e l ,e2)  of the phenomenon represented in a ~ b 
with the truth of the correspondence proposition, [a =~ b - (el,e2)]. It is 
necessary to prescribe conditions for the latter; in accordance with the 
above postulate, one of these is that el be earlier than e 2 in the geometry 

i" See footnote t on p. 110. 
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of S. The spacelike separated occurrences are unordered causally, by 
definition of causal. A process is a causally ordered chain of  occurrences, 
and for a constant process the conditions in the chain are the same, the 
law having the form a :~ a. 

We assume that physical objects, whose names are used to express the 
a's, are defined from ensembles of  complete experiments, the latter being 
sets of  correspondence propositions. The fundamental observation 
theoretical problem then is to decide upon the correlations which the 
ensemble of  experiments provides, and the causal postulate rests on the 
assumption that this can be done always in such a way as to assure the 
coincidence of  the observer's causal representation with the invariant 
overall time ordering. 

In a scheme of this kind the physical existence of objects and occurrence 
of phenomena and events receive theoretical definitions, namely relative to 
the observation procedures the theory describes to be those of  a physical 
observer. In this sense, for example, a particle 'going backwards'  in time 
could not exist physically. The results of  the present paper  attain their 
significance in this observation theoretical context, and in that of  our 
assumption that a theory of this kind can be constructed which is free from 
contradictions. 

We propose to regard such a theory as providing a framework for the 
accommodation of fundamental physical theories as world models. One 
such model for example depicts matter in terms of particles on Newtonian 
space-time. 
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